No-Slip Boundary Condition Switches to Partial Slip When Fluid Contains Surfactant

نویسندگان

  • Yingxi Zhu
  • Steve Granick
چکیده

Physisorbed surfactant can change the hydrodynamic boundary condition of oil flow from “stick” to “partial slip”, provided that the shear stress on the wall exceeds a threshold level that decreases with increasing surface coverage of surfactant. To demonstrate this, Newtonian alkane fluids (octane, dodecane, tetradecane) were placed between molecularly smooth surfaces that were either wetting (muscovite mica) or rendered partially wetted by adsorption of surfactant (0.2 or 0.1 wt % hexadecylamine). The surface spacing was vibrated at spacings so large that the fluid responded as a continuum. The resulting hydrodynamic forces agreed with predictions from the no-slip boundary condition when flow rate, peak velocity normalized by surface spacing, was low but implied partial slip when it exceeded a critical level. In other words, the “slip length” depended on reduced velocity. When the reduced velocity was sufficiently high, a plateau shear stress was observed, ≈1.3 N m-2 for 0.2 wt % hexadecylamine, but also showing some dependence on the fluid, being ≈20% higher when the fluid was octane rather than tetradecane. In other words, adsorbed surfactant molecules appeared to act as a somewhat rougher surface, the smaller the adjoining molecules of fluid. The magnitudes of the slip lengths were considerably less than in experiments with chemically modified surfaces of equivalent smoothness. This study points to a possible mechanism by which “friction modifiers” operate in oil and gasoline.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Integral Transform Based Solution of Second Grade Fluid Flow between Two Parallel Plates

The importance of the slip flow over the no-slip condition is widely accepted in microscopic scaled domains with the direct impact on microfluidic and nanofluidic systems. The popular Navier Stoke’s (N-S) flow model is largely utilized with the slip flow phenomenon. In the present study, the finite integral transform scheme along with the shift of variables is implemented to solve the equation ...

متن کامل

Axisymmetric Magnetohydrodynamic Squeezing flow of Nanofluid in Porous Media under the influence of Slip Boundary Condition

The various industrial, biological and engineering applications of flow of squeezing flow of fluid between parallel plates have been the impetus for the continued interest and generation renewed interests on the subject. As a part of the renewed interests, this paper presents the study of axisymmetric magnetohydrodynamic squeezing flow of nanofluid in porous media under the influence of slip bo...

متن کامل

Numerical Simulation of Fluid Flow over a Ceramic Nanoparticle in Drug Delivery System

In this work, for better understanding of drug delivery systems, blood flow over a ceramic nanoparticle is investigated through microvessels. Drug is considered as a nanoparticle coated with the rigid ceramic. Due to the low characteristic size in the microvessel, the fluid flow is not continuum and the no-slip boundary condition cannot be applied. To solve this problem lattice Boltzmann method...

متن کامل

Nonlinear Vibration Analysis of Single-Walled Carbon Nanotube Conveying Fluid in Slip Boundary Conditions Using Variational Iterative Method

In this paper, nonlinear dynamic behaviour of the carbon nanotube conveying fluid in slip boundary conditions is studied using the variation iteration method. The developed solutions are used to investigate the effects of various parameters on the nonlinear vibration of the nanotube. The results indicate that an increase in the slip parameter leads to a decrease in the frequency of vibration an...

متن کامل

The effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows by Lattice-Boltzmann method

The aim of this study is to investigate the effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows in the context of single relaxation time Lattice Boltzmann method (SRT-LBM). The fluid flows are simulated using regularized, no-slip, Zou-He and bounce back boundary conditions for straight surfaces in a lid driven cavity and the two-dimensional flow ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002